Login for faster access to the best deals. Click here if you don't have an account.

3D Printing Materials

Mar 25th, 2022 at 08:19   Automobiles   Ratnapura   241 views

₨ --

  • img
Location: Ratnapura
Price: ₨ --

The Fused Filament Fabrication (FFF) printing process is incredibly adaptable—however, 3D Printer Filament doesn’t work for every plastic. As a result of the tight constraints required to precisely extrude plastic out of a tiny nozzle, traditional plastics originally optimized for injection molding do not print. The plastics that are printable, however, cover a massive range of compositions, print constraints, and material properties. To find the right material, you need to match the requirements of your applications to the properties of the materials you can print with. In this article, we discuss the strengths and weaknesses of a variety of thermoplastics.


In addition to printing thermoplastics, Markforged also adapts the FFF process to print non-plastic materials. In Continuous Filament Fabrication (CFF), an FFF 3D Printer with a specialized second nozzle lays down continuous carbon fiber, fiberglass, or Kevlar® into a part. Atomic Diffusion Additive Manufacturing (ADAM) builds on the existing metal fabrication technology of Metal Injection Molding (MIM), by using an FFF based process to print metal powder encased in a plastic binder. These printed parts are placed in a solvent bath to remove binding material and sintered into fully metallic parts.


Standard thermoplastics

As 3D printing has expanded rapidly, so has the variety of PETG 3D Printer Filaments. Despite this boom, most FFF 3D-printable thermoplastics fit into three categories: basic thermoplastics, niche thermoplastics, and superplastics.

Basic thermoplastics: These plastics don’t have any excellent qualities, but are the most popular printing thermoplastics available. PLA, the most common printing plastic, prints well and possesses decent mechanical properties—however, its complete lack of heat resistance and its low durability makes it impossible to use in industrial environments. ABS has superior heat resistance, but isn’t particularly strong and reacts poorly with most manufacturing chemicals. PETG, a printing subset of polyethylene, is a cross between the two: a bit stronger than ABS and a bit more heat resistant than PLA, but still not robust enough for most manufacturing environments.

Superplastics: These materials possess all the aspects necessary to thrive in manufacturing environments. PEEK and Ultem are both strong, stiff plastics that have extremely high heat resistance and chemical resistance. Engineers used them heavily in manufacturing before they were 3D printable, and now use Multifunctional 3D Printers to create custom, robust fixtures out of these materials.

Additional Details

Brand/Make Mercedes